Dvara Research BlogDvara Research Blog
Dvara Research Blog
Doorway to Financial Access
  • Home
  • Our Work
  • Themes
  • Subscribe
    • Email Subscription
    • Feed
  • Contact Us
Menu back  

Designing a Framework for Event Risk & Loss Estimation

December 7, 2014Leave a commentRisk Aggregation, Risk transmission Viewed : 8206

By Vaibhav Anand, IFMR Capital

This post is the first post in a new blog series that would delve and deliberate on different aspects of designing a framework that would enable a credit institution to identify the exposure to extreme events and to estimate the potential losses due to such events. 

Risk premium is one of the components of the cost of providing credit. It is important to understand the nature of underlying risk for estimating the real cost of credit. Historical repayment behaviour may provide significant insights to enable reasonable estimation of credit risk; however, the estimates may be limited to losses experienced in the past. For example, it is possible for a credit institution based in North-West India to have never experienced losses due to a devastating earthquake in its ten year long vintage. But it is not prudent to rule out the potential losses due to an earthquake in future; particularly when the geography is prone to experience devastating earthquakes. The key is to assess the potential risk of events which may have low probability of occurrence, in fact may not have occurred in last 20-30 years at all, but have potential for high impact.

Natural disasters come to mind immediately but these are not the only ones that should be reckoned with to estimate the real risk. Man-made disasters such as industrial accidents, terrorist attacks, and riots are some obvious examples of non-natural disasters. However, other man-made activities such as deforestation, mining, and construction may also lead to seemingly natural disasters. An article in The Hindu daily provides an interesting discussion on this causal relationship.

The focus of this blog series is not to delve into the reasons of such extreme events but rather to initiate a discussion on the design of a framework which would enable a credit institution to identify the exposure to extreme events and to estimate the potential losses due to such events. However, before designing a framework it is important to identify events the framework should address.

Extreme Events

The extreme events discussed here typically have following characteristics:

  • Uncertainty on the time of occurrence: There is usually a reasonable uncertainty on when the event could occur. For example it may be known 72 hours before a cyclone could hit the eastern coast but there may not be any inkling of the cyclone, say, a week in advance. Scientific advances have made it possible to predict some of these events but the time frame between the warning and the occurrence is usually very small.
  • Nature of Impact: Impact is almost always disastrous in nature. However, an unexpected technological innovation could effectively throw an established technology giant out of business, hence a disastrous event for the company, but nevertheless a positive event in a broader frame of reference! But, in this blog we are not focussing on such good-bad or bad-good events.
  • Large scale of impact: The event has to have an impact on a very large scale. A land slide impacting a couple of houses, though tragic and disastrous for the families, may not qualify as an extreme event.

However, the impact need not be instantaneously realised. For example, droughts qualify as extreme events but usually make the impact over a longer period of time, unlike earthquakes.

Also, an event, disastrous in nature on a large scale, may occur periodically, e.g. floods in certain rivers may impact the geography almost every year. Such events, though classified as extreme events, will need different approach for risk measurement. Residents and institutions in geographies regularly affected by periodic events develop, over the time, various mitigation strategies to minimize economic losses. We plan to discuss in some detail such cases in a later post in this series.

Framework

The framework should enable a credit institution to measure its portfolio exposure to extreme events and to estimate the expected and unexpected losses due to such events. Ideally it should mimic the linkages between the occurrence of the event and the eventual losses in the portfolio.

EventRisk_041214_Img1
Figure 1: Linkages between the event and the eventual losses

The key components of such a framework should include:

  • Mapping Module: To standardize and map the exposure and risk factors like location vulnerability and industry clusters to geographies at a granular level. This is a data intensive module and forms the backbone of the framework.
  • Impact Module: To estimate the loss if an event actually occurs. This, in our opinion, is the trickiest bit to put in place; partly because the loss data is not available always and partly because the nature of impact and the eventual response depend on various factors such as asset class, underlying industry, credit policies, relief activities, past experience, and risk mitigation tools available to borrowers and institutions.
  • Simulation Module: To simulate! Based on the probability and severity assumptions, the module can use the Monte Carlo simulations to generate various extreme event scenarios and estimate the eventual loss distribution.

In the subsequent blog posts we plan to discuss in detail each of the above modules.

—

As part of our blog series on the recently held Spark sessions, Vaibhav presented his thoughts on the framework at one of the talks. You can view the video & the presentation from his session below:

Presentation:

Video:

Share Via :Tweet about this on Twitter
Twitter
Share on Facebook
Facebook
Share on LinkedIn
Linkedin
Email this to someone
email
CapitalEvent Risk - Framework
Leave Comment

Cancel reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

two × 1 =

clear formSubmit

Related posts
Replug – Interview with Dr. Viral Acharya
December 28, 2016
Loss Given Default Estimation using Transition Matrix (TM-LGD): A Case Study
August 28, 2015
Designing a Framework for Event Risk & Loss Estimation: Understanding Natural Disasters
March 24, 2015
Estimating the Diversity Score of a Portfolio across Multiple Correlated Sectors: Generalized Herfindahl-Hirschman Index
February 4, 2015
What impacts the performance of a securitised Commercial Vehicle pool?
November 22, 2013
IFMR Capital: Securitizing Microloans for Non-Bank Investors
March 12, 2013
Search
Recent Comments
  • Prasanna Srinivasan on Care through competition: The case of the Netherlands: “This made interesting and informative reading. Thank you. Inevitably, the mind ran a comparison with the Indian context even while…”
  • Misha Sharma on Direct Benefit Transfers in Assam, Chhattisgarh, and Andhra Pradesh: Introducing the Dvara-Haqdarshak Study on Exclusion in Government to Person Payments: “Great post, Aarushi. It will also be interesting to document the challenges faced in accessing these transfers and experiences with…”
  • Misha Sharma on What is Social Protection?: “Thanks for writing this, Anupama. A much needed piece and looking forward to the second post in this series. It…”
Subscribe and Follow Us

Popular Post

Popular Post
  • Approaches to Assessing Household Income for Microfinance Clients
    June 24, 2022
  • Incremental Adoption of Managed Competition in Germany
    June 20, 2022
  • Note on RBI’s Prompt Corrective Action Framework for Non-Banking Financial Companies
    June 17, 2022

Categories

Categories
  • Channels(88)
  • Consumer Protection(33)
  • Events(30)
  • Featured(42)
  • Field Reports(6)
  • From the field(9)
  • General(22)
  • Guest(30)
  • Household Research(75)
  • Long Term Debt Markets(9)
  • News(45)
  • Origination(30)
  • Products(42)
  • Regulation(112)
  • Research(253)
  • Risk Aggregation(26)
  • Risk transmission(63)
  • Small Cities(21)
  • Technology(25)
  • Uncategorized(105)
  • Unemployment Support(5)

Archives

Archives
  • June 2022 (5)
  • May 2022 (2)
  • April 2022 (4)
  • March 2022 (2)
  • February 2022 (3)
  • January 2022 (3)
  • December 2021 (4)
  • November 2021 (6)
  • October 2021 (4)
  • September 2021 (4)
  • August 2021 (6)
  • July 2021 (6)
  • June 2021 (10)
  • May 2021 (7)
  • April 2021 (9)
  • March 2021 (9)
  • February 2021 (7)
  • January 2021 (3)
  • December 2020 (7)
  • November 2020 (6)
  • October 2020 (10)
  • September 2020 (9)
  • August 2020 (12)
  • July 2020 (3)
  • June 2020 (5)
  • May 2020 (8)
  • April 2020 (4)
  • March 2020 (8)
  • February 2020 (3)
  • January 2020 (9)
  • December 2019 (4)
  • November 2019 (3)
  • October 2019 (7)
  • September 2019 (3)
  • August 2019 (2)
  • July 2019 (4)
  • June 2019 (4)
  • May 2019 (4)
  • April 2019 (7)
  • March 2019 (2)
  • February 2019 (3)
  • January 2019 (3)
  • December 2018 (5)
  • November 2018 (2)
  • October 2018 (5)
  • September 2018 (2)
  • August 2018 (2)
  • July 2018 (2)
  • June 2018 (2)
  • May 2018 (1)
  • April 2018 (1)
  • March 2018 (5)
  • February 2018 (2)
  • January 2018 (2)
  • December 2017 (5)
  • November 2017 (4)
  • October 2017 (3)
  • September 2017 (1)
  • August 2017 (3)
  • July 2017 (1)
  • June 2017 (3)
  • May 2017 (4)
  • April 2017 (3)
  • March 2017 (4)
  • February 2017 (3)
  • January 2017 (6)
  • December 2016 (5)
  • November 2016 (2)
  • October 2016 (3)
  • September 2016 (5)
  • August 2016 (4)
  • July 2016 (4)
  • June 2016 (8)
  • May 2016 (4)
  • April 2016 (5)
  • March 2016 (4)
  • February 2016 (3)
  • January 2016 (3)
  • December 2015 (3)
  • November 2015 (1)
  • October 2015 (2)
  • September 2015 (3)
  • August 2015 (5)
  • July 2015 (3)
  • June 2015 (3)
  • May 2015 (3)
  • April 2015 (2)
  • March 2015 (3)
  • February 2015 (1)
  • January 2015 (1)
  • December 2014 (5)
  • November 2014 (4)
  • October 2014 (3)
  • September 2014 (4)
  • August 2014 (4)
  • July 2014 (4)
  • June 2014 (8)
  • May 2014 (1)
  • April 2014 (4)
  • March 2014 (5)
  • February 2014 (6)
  • January 2014 (8)
  • December 2013 (7)
  • November 2013 (8)
  • October 2013 (7)
  • September 2013 (7)
  • August 2013 (5)
  • July 2013 (6)
  • June 2013 (7)
  • May 2013 (6)
  • April 2013 (8)
  • March 2013 (9)
  • February 2013 (6)
  • January 2013 (9)
  • December 2012 (8)
  • November 2012 (7)
  • October 2012 (5)
  • September 2012 (5)
  • August 2012 (5)
  • July 2012 (7)
  • June 2012 (4)
  • May 2012 (6)
  • April 2012 (4)
  • March 2012 (7)
  • February 2012 (6)
  • January 2012 (8)
  • December 2011 (8)
  • November 2011 (7)
  • October 2011 (8)
  • September 2011 (7)
  • August 2011 (3)
  • July 2011 (6)
  • June 2011 (11)
  • May 2011 (8)
  • April 2011 (9)
  • March 2011 (13)
  • February 2011 (10)
  • January 2011 (8)
  • December 2010 (10)
  • November 2010 (10)
  • October 2010 (10)
  • September 2010 (7)
  • August 2010 (13)
  • July 2010 (10)
  • June 2010 (6)
  • May 2010 (13)
  • April 2010 (7)
  • March 2010 (10)
  • February 2010 (5)
  • January 2010 (4)
  • December 2009 (3)
  • November 2009 (1)
  • October 2009 (6)
  • August 2009 (1)
  • July 2009 (2)
  • June 2009 (1)
  • May 2009 (1)
  • April 2009 (1)
  • March 2009 (1)
Share Via :Tweet about this on Twitter
Twitter
Share on Facebook
Facebook
Share on LinkedIn
Linkedin
Email this to someone
email
Site Map

www.dvara.com